Glutamate transporters regulate lesion-induced plasticity in the developing somatosensory cortex.
نویسندگان
چکیده
Glutamate transporters are involved in neural differentiation, neuronal survival, and synaptic transmission. In the present study, we examined glutamate transporter 1 (GLT1) expression in the neonatal somatosensory cortex of C57BL/6 mice, and pursued its role in somatosensory development by comparing barrel development between GLT1 knock-out and control mice. During the first few neonatal days, a critical period for barrels, GLT1 expression is strikingly upregulated in cortical astrocytes, whereas it was downregulated in neuronal elements to below the detection threshold. GLT1 knock-out neonates developed normally in terms of body growth, cortical histoarchitecture, barrel formation, and critical period termination. However, when row C whiskers were lesioned during the critical period, reduction of lesioned row C barrels and reciprocal expansion of intact row B/D barrels were both milder in GLT1 knock-out mice than in control littermates. Accordingly, the map plasticity index, calculated as (B + D)/2C, was significantly lowered in GLT1 knock-out mice. We also found that extracellular glutamate levels in the neonatal somatosensory cortex were significantly elevated in GLT1 knock-out mice. Diminished lesion-induced plasticity was further found in mutant mice lacking glutamate-aspartate transporter (GLAST), an astrocyte-specific glutamate transporter throughout development. Therefore, glutamate transporters regulate critical period plasticity by enhancing expansion of active barrels and shrinkage of inactive barrels. Because cortical contents of glutamate receptors and GLAST were unaltered in GLT1 knock-out mice, this action appears to be mediated, at least partly, by keeping the ambient glutamate level low. Considering an essential role of glutamate receptors in the formation of whisker-related thalamocortical synapse patterning, glutamate transporters thus facilitate their activity-dependent remodeling.
منابع مشابه
Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملNeuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats
Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملThe Relationship between Glutamate and Multiple Sclerosis
Glutamate is the most important excitatory neurotransmitter in the central nervous system which is involved in synaptic transmission, brain development, synaptic plasticity, learning, and memory. Normally, the enzymatic destruction of glutamate does not occur in the synaptic and extracellular space, but glutamate is removed through specific transporter proteins, leading to stabilization of glut...
متن کاملDissociating barrel development and lesion-induced plasticity in the mouse somatosensory cortex.
In the mouse somatosensory cortex, thalamocortical axons (TCAs) corresponding to individual whiskers cluster into restricted barrel domains during the first days of life. If whiskers are lesioned before that time, the cortical space devoted to the afferents from the damaged whisker shrinks and becomes occupied by thalamocortical afferents from neighboring unlesioned whiskers. This plasticity en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 19 شماره
صفحات -
تاریخ انتشار 2008